Sáng kiến kinh nghiệm Dạy kiến thức Hình tam giác cho học sinh chậm tiến Lớp 5
- Hình học là nội dung cơ bản, chủ yếu của chương trình môn Toán ở Tiểu học, nó được rải đều tất cả các khối lớp và được nâng cao dần về mức độ. Từ nhận diện hình ở lớp 1, 2 sang đến tính chu vi, diện tích ở các lớp 3, 4, 5. Nói chung, hình học là môn học tương đối khó trong chương trình môn Toán vì nó đòi hỏi người học khả năng tư duy trừu tượng, những em có học lực khá và giỏi sẽ rất thích học môn này, ngược lại những em có khả năng tư duy chậm hơn thì rất ngại học dẫn đến tình trạng học sinh chậm tiến môn toán chiếm tỉ lệ khá cao so với các môn học khác.
- Trong chương trình Toán 5 việc dạy nội dung hình học cho học sinh không khó, bên cạnh những thành công là giúp học sinh nắm được cách nhận diện hình, tìm diện tích, chu vi, thể tích thì cũng còn những hạn chế là các em chưa nắm rõ bản chất của đơn vị kiến thức, kết quả là chưa đáp ứng được yêu cầu của thực hành. Làm thế nào để các em có thể sử dụng kiến thức cơ bản một cách linh hoạt ở từng trường hợp cụ thể. Đó cũng là trăn trở của bản thân khi dạy cho học sinh kiến thức về nội dung hình học.
- Đặt cho mình nhiệm vụ tháo gỡ những khó khăn trên, bản thân đã nhiều năm (15 năm) được phân công dạy lớp 5, trong quá trình giảng dạy tôi rút ra một vài kinh nghiệm trong việc giúp học sinh chậm tiến học các bài có nội dung hình học. Vì vậy tôi chọn đề tài: “Dạy kiến thức hình tam giác cho học sinh chậm tiến - Lớp 5”.
Tóm tắt nội dung tài liệu: Sáng kiến kinh nghiệm Dạy kiến thức Hình tam giác cho học sinh chậm tiến Lớp 5
trường hợp cụ thể. Đó cũng là trăn trở của bản thân khi dạy cho học sinh kiến thức về nội dung hình học. - Đặt cho mình nhiệm vụ tháo gỡ những khó khăn trên, bản thân đã nhiều năm (15 năm) được phân công dạy lớp 5, trong quá trình giảng dạy tôi rút ra một vài kinh nghiệm trong việc giúp học sinh chậm tiến học các bài có nội dung hình học. Vì vậy tôi chọn đề tài: “Dạy kiến thức hình tam giác cho học sinh chậm tiến - Lớp 5”. 2. Thực trạng Trí nhớ của học sinh chưa bền vững chỉ dừng lại ở phát triển tư duy cụ thể còn tư duy trừu tượng, khái quát kém phát triển (nhất là ở học sinh chậm tiến) nên khi gặp những bài cần có sự tư duy logic như tính chiều cao hay độ dài đáy thì các em không làm được do không có công thức tính. Đặc điểm của trẻ ở Tiểu học là chóng nhớ nhưng nhanh quên. Sau khi học bài mới, cho các em luyện tập ngay thì các em làm được bài nhưng chỉ sau một thời gian ngắn kiểm tra lại thì hầu như các em đã quên hoàn toàn, đặc biệt là những tiết ôn tập, luyện tập cuối năm. I... Từ phân tích nội dung, khi các em đã nắm được trọng tâm bài, giáo viên giúp học sinh xác định rõ đường cao xuất phát từ 1 đỉnh luôn vuông góc với đáy tương ứng. Khi giúp học sinh phân biệt 3 dạng hình, giáo viên cần tiến hành thêm 1 số công việc như sau: Với tam giác có 3 góc nhọn Sau khi học sinh đã quan sát trong sách giáo khoa về đặc điểm của loại hình này, giáo viên có thể gợi mở bằng 1 số câu hỏi sau : - Ba góc của tam giác lớn hơn hay nhỏ hơn góc vuông? - AH là đường cao tương ứng với đáy BC như hình vẽ trên bảng. Nếu lấy đáy là AC ta sẽ có đường cao nào? Tương tự nếu lấy đáy là AB thì đường cao sẽ hạ từ đâu? Học sinh sẽ suy nghĩ để tìm cách vẽ trong vở hoặc trên bảng lớp với các loại hình đều có đáy BC, AC, AB như hình vẽ dưới đây: A H C B A H C B A H C B Tiếp theo, giáo viên đưa ra 1 số hình tam giác với các vị trí đáy khác nhau, yêu cầu học sinh vận dụng những điều vừa học xác định đường cao lần lượt với các đáy AB, AC, BC. Sau khi đã vẽ xong, giáo viên cùng học sinh thống nhất các đường cao tương ứng với các đáy như các hình dưới đây: C H B A A H C B A H C B Cuối cùng giáo viên hỏi: Ba đường cao của tam giác có 3 góc nhọn nằm trong hay ngoài tam giác? Tam giác có 1 góc tù và 2 góc nhọn Với đối tượng học sinh chậm tiến thì việc xác định đường cao trong loại tam giác này thực sự khó khăn, các em sẽ không kẻ được nếu không có sự giúp đỡ của giáo viên. Sách giáo khoa đã giới thiệu đường cao AH tương ứng với đáy BC nhưng giáo viên cần lưu ý học sinh để kẻ được đường cao trước hết ta phải kéo dài đáy sang A C H B hai bên, sau đó kẻ đường cao AH từ đỉnh A vuông góc xuống BC. Tương tự phần trên, giáo viên cũng đưa ra các tam giác với các vị trí đáy khác nhau và yêu cầu học sinh thực hành kẻ đường cao tương ứng với các đáy. Nhưng giáo viên vẫn phải lưu ý học sinh thực hiện theo 2 bước: - Kéo dài đáy sang 2 bên. - Kẻ đường cao từ đỉnh vuông góc xuống đáy. Sau khi các em thực hiện xong, đáp án đúng sẽ là: A C H B A...ố liệu các em sẽ làm được bài tập 1, 2 (tiết 86) bài 1, 2, 3, 4 (tiết 87) và bài 3 (tiết 88). Tiếp theo, giáo viên phải làm rõ cho học sinh 2 nội dung sau: + Cũng như việc tính diện tích hình chữ nhật, hình thoi, hình bình hành, để tính được diện tích tam giác thì các số đo : chiều cao, độ dài đáy phải cùng 1 đơn vị đo, nếu vậy các em sẽ làm đúng bài 2a (tiết 86) và bài 1b (tiết 87). + Cho học sinh nhận xét thêm về công thức Ta xem: (a x h) là số bị chia 2 là số chia S là thương Thì a x h = 2 x S a x h là thừa số 2 x S là tích. Nếu a là thành phần chưa biết thì a = 2 x S : h. (1) Nếu h là thành phần chưa biết thì h = 2 x S :a (2) Đến đây học sinh có thể dùng 2 công thức (1) và (2) để làm bài tập dạng: a) Tam giác có diện tích là 39.44 cm2, chiều cao là 5.8 cm. Tính độ dài cạnh đáy? b) Tam giác có diện tích là m2, độ dài đáy là m. Tính chiều cao? Và học sinh thực hành tốt bài tập 1 tiết 103 (trang 106): Tam giác có diện tích 5/8 m2, chiều cao 1/2 m. Tính độ dài đáy của tam giác đó? Từ công thức tổng quát trên, học sinh dễ dàng giải bài toán này. Tóm lại: Đối với hình tam giác giáo viên cần giúp học sinh làm rõ các nội dung ngoài sách giáo khoa: - Xác định đường cao ngoài. - Các yếu tố độ dài đáy, chiều cao phải cùng đơn vị đo. - Tìm hiểu công thức tính độ dài đáy, chiều cao. - Hai tam giác bất kỳ nếu có chung đáy (đáy bằng nhau), chiều cao bằng nhau (chung chiều cao) thì hai tam giác đó có diện tích bằng nhau. Để học sinh không quên kiến thức sau khi học, thỉnh thoảng giáo viên cho học sinh ôn lại công thức hoặc làm 1 ví dụ nhỏ trên bảng con trong các ngày học chéo buổi. 3. Kết quả - Từ năm học 2014 – 2015 đến nay, thực hiện theo "Thông tư 30 và Thông tư 22 cùng với Văn bản hợp nhất số 03" của Bộ giáo dục và Đào tạo thì sẽ không chấm điểm bài làm của học sinh trên lớp mà chỉ nhận xét bằng lời, nhưng để đánh giá một cách khách quan và toàn diện, bản thân tôi cũng đã thực nghiệm bài kiểm tra trên lớp và đã cho kết quả rất khả q
File đính kèm:
- sang_kien_kinh_nghiem_day_kien_thuc_hinh_tam_giac_cho_hoc_si.doc