Giáo án bồi dưỡng học sinh giỏi Toán Lớp 7

PHẦN ĐẠI SỐ

                 Chuyền đề 1:  Các bài toán thực hiện phép tính:

  1. Các kiến thức vận dụng:
    • Tính chất của phép cộng , phép nhân
    •  Các phép toán về lũy thừa: 

an = ;    am.an = am+n ;     am : an = am –n ( a 0, mn)

(am)n = am.n ;    ( a.b)n = an .bn   ;

     2 . Một số bài toán :

 Bài 1: a) Tính tổng : 1+ 2 + 3 +….  +  n , 1+ 3 + 5 +….   + (2n -1)

            b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1)

                                    1.2.3+ 2.3.4 + 3.4.5 +  ….+ n(n+1)(n+2)

               Với n là số tự nhiên khác không.

 HD :  a) 1+2 + 3 + .. ..+ n = n(n+1)

                1+ 3+ 5+ …+ (2n-1) = n2

           b) 1.2+2.3+3.4+   …+ n(n+1) 

            = [1.2.(3 - 0) + 2.3.(4 - 1) + 3.4(5 – 2) + …..+ n(n + 1)( (n+2) – (n – 1))] : 3

            = [ 1.2.3 – 1.2.3 + 2.3.4 – 2.3.4 +……+ n(n+1)(n+2)] : 3

            = n(n+ 1)(n+2) :3

               1.2.3 + 2.3.4+ 3.4.5 + ….+ n(n+1)(n+2)

    = [ 1.2.3(4 – 0) + 2.3.4( 5 -1) + 3.4.5.(6 -2) + ……+ n(n+1)(n+2)( (n+3) – (n-1))]: 4

    = n(n+1)(n+2)(n+3) : 4

doc 13 trang Hòa Minh 7780
Bạn đang xem tài liệu "Giáo án bồi dưỡng học sinh giỏi Toán Lớp 7", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Giáo án bồi dưỡng học sinh giỏi Toán Lớp 7

Giáo án bồi dưỡng học sinh giỏi Toán Lớp 7
 HD: a) S = 1+ a + a2 +..+ an aS = a + a2 +..+ an + an+1 
 Ta có : aS – S = an+1 – 1 ( a – 1) S = an+1 – 1
 Nếu a = 1 S = n
 Nếu a khác 1 , suy ra S = 
Áp dụng với b – a = k
Ta có : A = 
 = 
 = 
Bài 3 : a) Tính tổng : 12 + 22 + 32 + . + n2
 b) Tính tổng : 13 + 23 + 33 + ..+ n3
 HD : a) 12 + 22 + 32 + .+ n2 = n(n+1)(2n+1): 6
 b) 13 + 23 + 33 + ..+ n3 = ( n(n+1):2)2
Bài 3: Thực hiện phép tính:
 a) A = 
 b) 
HD : A = ; B = 
Bài 4: 1, Tính: P = 
 2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025. 
Tính: S = 23 + 43 + 63 + . . . .+ 203
Bài 5: a) TÝnh 
b) Cho 
Chøng minh r»ng .
Bài 6: a) Tính : 
 b) TÝnh 
HD: Nhận thấy 2011 + 1 = 2010+2 = .
 = 
c) 
 Bài 7: a) Tính giá trị của biểu thức: 
 b) Chứng tỏ rằng:
Bài 8: a) Tính giá trị của biểu thức:
b) Chứng minh rằng tổng:
 Chuyên đề 2: Bài toán về tính chất của dãy tỉ số bằng nhau:
Kiến thức vận dụng :
 - 
 -Nếu thì với gt các tỉ số dều có nghĩa
- Có = k Thì a = bk, c = d k, e = fk
2. Bài tập vận dụng
 Dạng 1 Vậ...t; với y = 0 thay vào không thỏa mãn
 Nếu y khác 0
 => -x = 5x -12
=> x = 2. Thay x = 2 vào trên ta được:
 =>1+ 3y = -12y => 1 = -15y => y = 
Vậy x = 2, y = thoả mãn đề bài
Bài 3 : Cho và a + b + c ≠ 0; a = 2012.
Tính b, c.
 HD : từ a = b = c = 2012
Bài 4 : Tìm các số x,y,z biết : 
HD: Áp dụng t/c dãy tỉ số bằng nhau:
 (vì x+y+z 0)
Suy ra : x + y + z = 0,5 từ đó tìm được x, y, z
Bài 5 : Tìm x, biết rằng: 
 HD : Từ 
 Suy ra : 
Bài 6: T×m x, y, z biÕt: (x, y, z )
 HD : Từ 
 Từ x + y + z = x + y = - z , y +z = - x , z + x = - y thay vào đẳng thức ban đầu để tìm x.
Bài 7 : T×m x, y, z biÕt vµ 
Bài 8 : Tìm x , y biết : 
 Chuyên đề 3: Vận dụng tính chất phép toán để tìm x, y 
Kiến thức vận dụng :
Tính chất phép toán cộng, nhân số thực
Quy tắc mở dấu ngoặc, quy tắc chuyển vế
Tính chất về giá trị tuyệt đối : với mọi A ; 
Bất đẳng thức về giá trị tuyệt đối : 
 dấu ‘=’ xẩy ra khi AB 0; dấu ‘= ‘ xẩy ra A,B >0
 ; với m > 0
Tính chất lũy thừa của 1 số thực : A2n 0 với mọi A ; - A2n 0 với mọi A
Am = An m = n; An = Bn A = B (nếu n lẻ ) hoặc A = B ( nếu n chẵn)
 0< A < B An < Bn ; 
Bài tập vận dụng
 Dạng 1: Các bài toán cơ bản
Bài 1: Tìm x biết
 a) x + 2x + 3x + 4x + ..+ 2011x = 2012.2013
 b) 
HD : a) x + 2x + 3x + 4x + ..+ 2011x = 2012.2013
 x( 1 + 2 + 3 + .+ 2011) = 2012.2013
 b) Nhận xét : 2012 = 2011+1= 2010 +2 = 2009 +3 = 2008 +4
 Từ 
Bài 2 Tìm x nguyên biết
 a) 
 b) 1- 3 + 32 – 33 + .+ (-3)x = 
Dạng 2 : Tìm x có chứa giá trị tuyệt đối 
Dạng : và 
 Khi giải cần tìm giá trị của x để các GTTĐ bằng không, rồi so sánh các giá trị đó để chia ra các khoảng giá trị của x ( so sánh –a và –b)
Bài 1 : Tìm x biết :
 a) b) 
HD : a) (1) do VT = 
 nên VP = x – 2012 (*)
Từ (1) 
 Kết hợp (*) x = 4023:2
 b) (1)
 Nếu x 2010 từ (1) suy ra : 2010 – x + 2011 – x = 2012 x = 2009 :2 (lấy)
 Nếu 2010 < x < 2011 từ (1) suy ra : x – 2010 + 2011 – x = 2012 hay 1 = 2012 (loại) 
 Nếu x từ (1) suy ra : x – 2010 + x –...ột tổng , một tích 
 - ƯCLN, BCNN của các số 
 2. Bài tập vận dụng :
 * Tìm x,y dưới dạng tìm nghiệm của đa thức 
Bài 1: a) Tìm các số nguyên tố x, y sao cho: 51x + 26y = 2000
 b) Tìm số tự nhiên x, y biết: 
 c) Tìm x, y nguyên biết: xy + 3x - y = 6
 d) Tìm mọi số nguyên tố thoả mãn : x2-2y2=1
HD: a) Từ 51x + 26y = 2000 17.3.x = 2.( 1000 – 13 y) do 3,17 là số NT nên x mà x NT x = 2. Lại có 1000 – 13y , 1000 – 13y > 0 và y NT y = 
 b) Từ (1)
 do 7(x–2004)2 0 
Mặt khác 7 là số NT vậy y = 3 hoặc y = 4 thay vào (1)
 suy ra : x= 2005 ,y =4 hoặc x = 2003, y = 4
Ta có xy + 3x - y = 6 ( x – 1)( y + 3) = 3 hoặc 
hoặc hoặc 
x2-2y2=1 
 do VP = 2y2 chia hết cho 2 suy ra x > 2 , mặt khác y nguyên tố 
Bài 2 a) Tìm các số nguyên thỏa mãn : x – y + 2xy = 7 
 b) Tìm biết: 
HD : a) Từ x – y + 2xy = 7 2x – 2y + 2xy = 7 (2x - 1)( 2y + 1) = 13
 b) Từ y2 25 và 25 – y2 chia hết cho 8 , suy ra y = 1 hoặc y = 3 hoặc y = 5 , từ đó tìm x 
Bài 3 a) Tìm giá trị nguyên dương của x và y, sao cho: 
 b) Tìm các số a, b, c nguyên dương thoả mãn :
 và 
HD : a) Từ 5 ( x + y) = xy (*) 
 + Với x chia hết cho 5 , đặt x = 5 q ( q là số tự nhiên khác 0) thay vào (*) suy ra:
 5q + y = qy 5q = ( q – 1 ) y . Do q = 1 không thỏa mãn , nên với q khác 1 ta có Ư(5) , từ đó tìm được y, x
 b) a2 ( a +3) = 5b – 5 , mà a2. 5c = 5( 5b – 1 – 1)
 Do a, b, c nguyên dương nên c = 1( vì nếu c >1 thì 5b – 1 - 1 không chia hết cho 5 do đó a không là số nguyên.) . Với c = 1 a = 2 và b = 2
Bài 4: T×m c¸c cÆp sè nguyªn tè p, q tho¶ m·n:
HD : 
Do p nguyên tố nên và 2013 – q2 > 0 từ đó tìm được q
Bài 5 : T ìm tất cả các số nguyên dương n sao cho: chia hết cho 7
 HD : Với n < 3 thì 2n không chia hết cho 7
 Với n khi đó n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 ( )
 Xét n = 3k , khi đó 2n -1 = 23k – 1 = 8k – 1 = ( 7 + 1)k -1 = 7.A + 1 -1 = 7.A 
 Xét n = 3k +1 khi đó 2n – 1 = 23k+1 – 1 = 2.83k – 1 = 2.(7A+1) -1 = 7A + 1 không chia hết cho 7
 Xét n = 3k+2 khi đó 2n – 1 = 23k +2 -1 = 4.

File đính kèm:

  • docgiao_an_boi_duong_hoc_sinh_gioi_toan_lop_7.doc