Giáo án bồi dưỡng học sinh giỏi Toán Lớp 7

PHẦN ĐẠI SỐ

                 Chuyền đề 1:  Các bài toán thực hiện phép tính:

  1. Các kiến thức vận dụng:
    • Tính chất của phép cộng , phép nhân
    •  Các phép toán về lũy thừa: 

an = ;    am.an = am+n ;     am : an = am –n ( a 0, mn)

(am)n = am.n ;    ( a.b)n = an .bn   ;

     2 . Một số bài toán :

 Bài 1: a) Tính tổng : 1+ 2 + 3 +….  +  n , 1+ 3 + 5 +….   + (2n -1)

            b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1)

                                    1.2.3+ 2.3.4 + 3.4.5 +  ….+ n(n+1)(n+2)

               Với n là số tự nhiên khác không.

 HD :  a) 1+2 + 3 + .. ..+ n = n(n+1)

                1+ 3+ 5+ …+ (2n-1) = n2

           b) 1.2+2.3+3.4+   …+ n(n+1) 

            = [1.2.(3 - 0) + 2.3.(4 - 1) + 3.4(5 – 2) + …..+ n(n + 1)( (n+2) – (n – 1))] : 3

            = [ 1.2.3 – 1.2.3 + 2.3.4 – 2.3.4 +……+ n(n+1)(n+2)] : 3

            = n(n+ 1)(n+2) :3

               1.2.3 + 2.3.4+ 3.4.5 + ….+ n(n+1)(n+2)

    = [ 1.2.3(4 – 0) + 2.3.4( 5 -1) + 3.4.5.(6 -2) + ……+ n(n+1)(n+2)( (n+3) – (n-1))]: 4

    = n(n+1)(n+2)(n+3) : 4

doc 13 trang Hòa Minh 13/06/2023 2600
Bạn đang xem tài liệu "Giáo án bồi dưỡng học sinh giỏi Toán Lớp 7", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Giáo án bồi dưỡng học sinh giỏi Toán Lớp 7

Giáo án bồi dưỡng học sinh giỏi Toán Lớp 7
 HD: a) S = 1+ a + a2 +..+ an aS = a + a2 +..+ an + an+1 
 Ta có : aS – S = an+1 – 1 ( a – 1) S = an+1 – 1
 Nếu a = 1 S = n
 Nếu a khác 1 , suy ra S = 
Áp dụng với b – a = k
Ta có : A = 
 = 
 = 
Bài 3 : a) Tính tổng : 12 + 22 + 32 + . + n2
 b) Tính tổng : 13 + 23 + 33 + ..+ n3
 HD : a) 12 + 22 + 32 + .+ n2 = n(n+1)(2n+1): 6
 b) 13 + 23 + 33 + ..+ n3 = ( n(n+1):2)2
Bài 3: Thực hiện phép tính:
 a) A = 
 b) 
HD : A = ; B = 
Bài 4: 1, Tính: P = 
 2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025. 
Tính: S = 23 + 43 + 63 + . . . .+ 203
Bài 5: a) TÝnh 
b) Cho 
Chøng minh r»ng .
Bài 6: a) Tính : 
 b) TÝnh 
HD: Nhận thấy 2011 + 1 = 2010+2 = .
 = 
c) 
 Bài 7: a) Tính giá trị của biểu thức: 
 b) Chứng tỏ rằng:
Bài 8: a) Tính giá trị của biểu thức:
b) Chứng minh rằng tổng:
 Chuyên đề 2: Bài toán về tính chất của dãy tỉ số bằng nhau:
Kiến thức vận dụng :
 - 
 -Nếu thì với gt các tỉ số dều có nghĩa
- Có = k Thì a = bk, c = d k, e = fk
2. Bài tập vận dụng
 Dạng 1 Vậ...t; với y = 0 thay vào không thỏa mãn
 Nếu y khác 0
 => -x = 5x -12
=> x = 2. Thay x = 2 vào trên ta được:
 =>1+ 3y = -12y => 1 = -15y => y = 
Vậy x = 2, y = thoả mãn đề bài
Bài 3 : Cho và a + b + c ≠ 0; a = 2012.
Tính b, c.
 HD : từ a = b = c = 2012
Bài 4 : Tìm các số x,y,z biết : 
HD: Áp dụng t/c dãy tỉ số bằng nhau:
 (vì x+y+z 0)
Suy ra : x + y + z = 0,5 từ đó tìm được x, y, z
Bài 5 : Tìm x, biết rằng: 
 HD : Từ 
 Suy ra : 
Bài 6: T×m x, y, z biÕt: (x, y, z )
 HD : Từ 
 Từ x + y + z = x + y = - z , y +z = - x , z + x = - y thay vào đẳng thức ban đầu để tìm x.
Bài 7 : T×m x, y, z biÕt vµ 
Bài 8 : Tìm x , y biết : 
 Chuyên đề 3: Vận dụng tính chất phép toán để tìm x, y 
Kiến thức vận dụng :
Tính chất phép toán cộng, nhân số thực
Quy tắc mở dấu ngoặc, quy tắc chuyển vế
Tính chất về giá trị tuyệt đối : với mọi A ; 
Bất đẳng thức về giá trị tuyệt đối : 
 dấu ‘=’ xẩy ra khi AB 0; dấu ‘= ‘ xẩy ra A,B >0
 ; với m > 0
Tính chất lũy thừa của 1 số thực : A2n 0 với mọi A ; - A2n 0 với mọi A
Am = An m = n; An = Bn A = B (nếu n lẻ ) hoặc A = B ( nếu n chẵn)
 0< A < B An < Bn ; 
Bài tập vận dụng
 Dạng 1: Các bài toán cơ bản
Bài 1: Tìm x biết
 a) x + 2x + 3x + 4x + ..+ 2011x = 2012.2013
 b) 
HD : a) x + 2x + 3x + 4x + ..+ 2011x = 2012.2013
 x( 1 + 2 + 3 + .+ 2011) = 2012.2013
 b) Nhận xét : 2012 = 2011+1= 2010 +2 = 2009 +3 = 2008 +4
 Từ 
Bài 2 Tìm x nguyên biết
 a) 
 b) 1- 3 + 32 – 33 + .+ (-3)x = 
Dạng 2 : Tìm x có chứa giá trị tuyệt đối 
Dạng : và 
 Khi giải cần tìm giá trị của x để các GTTĐ bằng không, rồi so sánh các giá trị đó để chia ra các khoảng giá trị của x ( so sánh –a và –b)
Bài 1 : Tìm x biết :
 a) b) 
HD : a) (1) do VT = 
 nên VP = x – 2012 (*)
Từ (1) 
 Kết hợp (*) x = 4023:2
 b) (1)
 Nếu x 2010 từ (1) suy ra : 2010 – x + 2011 – x = 2012 x = 2009 :2 (lấy)
 Nếu 2010 < x < 2011 từ (1) suy ra : x – 2010 + 2011 – x = 2012 hay 1 = 2012 (loại) 
 Nếu x từ (1) suy ra : x – 2010 + x –...ột tổng , một tích 
 - ƯCLN, BCNN của các số 
 2. Bài tập vận dụng :
 * Tìm x,y dưới dạng tìm nghiệm của đa thức 
Bài 1: a) Tìm các số nguyên tố x, y sao cho: 51x + 26y = 2000
 b) Tìm số tự nhiên x, y biết: 
 c) Tìm x, y nguyên biết: xy + 3x - y = 6
 d) Tìm mọi số nguyên tố thoả mãn : x2-2y2=1
HD: a) Từ 51x + 26y = 2000 17.3.x = 2.( 1000 – 13 y) do 3,17 là số NT nên x mà x NT x = 2. Lại có 1000 – 13y , 1000 – 13y > 0 và y NT y = 
 b) Từ (1)
 do 7(x–2004)2 0 
Mặt khác 7 là số NT vậy y = 3 hoặc y = 4 thay vào (1)
 suy ra : x= 2005 ,y =4 hoặc x = 2003, y = 4
Ta có xy + 3x - y = 6 ( x – 1)( y + 3) = 3 hoặc 
hoặc hoặc 
x2-2y2=1 
 do VP = 2y2 chia hết cho 2 suy ra x > 2 , mặt khác y nguyên tố 
Bài 2 a) Tìm các số nguyên thỏa mãn : x – y + 2xy = 7 
 b) Tìm biết: 
HD : a) Từ x – y + 2xy = 7 2x – 2y + 2xy = 7 (2x - 1)( 2y + 1) = 13
 b) Từ y2 25 và 25 – y2 chia hết cho 8 , suy ra y = 1 hoặc y = 3 hoặc y = 5 , từ đó tìm x 
Bài 3 a) Tìm giá trị nguyên dương của x và y, sao cho: 
 b) Tìm các số a, b, c nguyên dương thoả mãn :
 và 
HD : a) Từ 5 ( x + y) = xy (*) 
 + Với x chia hết cho 5 , đặt x = 5 q ( q là số tự nhiên khác 0) thay vào (*) suy ra:
 5q + y = qy 5q = ( q – 1 ) y . Do q = 1 không thỏa mãn , nên với q khác 1 ta có Ư(5) , từ đó tìm được y, x
 b) a2 ( a +3) = 5b – 5 , mà a2. 5c = 5( 5b – 1 – 1)
 Do a, b, c nguyên dương nên c = 1( vì nếu c >1 thì 5b – 1 - 1 không chia hết cho 5 do đó a không là số nguyên.) . Với c = 1 a = 2 và b = 2
Bài 4: T×m c¸c cÆp sè nguyªn tè p, q tho¶ m·n:
HD : 
Do p nguyên tố nên và 2013 – q2 > 0 từ đó tìm được q
Bài 5 : T ìm tất cả các số nguyên dương n sao cho: chia hết cho 7
 HD : Với n < 3 thì 2n không chia hết cho 7
 Với n khi đó n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 ( )
 Xét n = 3k , khi đó 2n -1 = 23k – 1 = 8k – 1 = ( 7 + 1)k -1 = 7.A + 1 -1 = 7.A 
 Xét n = 3k +1 khi đó 2n – 1 = 23k+1 – 1 = 2.83k – 1 = 2.(7A+1) -1 = 7A + 1 không chia hết cho 7
 Xét n = 3k+2 khi đó 2n – 1 = 23k +2 -1 = 4.

File đính kèm:

  • docgiao_an_boi_duong_hoc_sinh_gioi_toan_lop_7.doc